Sterol Regulatory Element–Binding Protein-1c Mediates Increase of Postprandial Stearic Acid, a Potential Target for Improving Insulin Resistance, in Hyperlipidemia

نویسندگان

  • Xia Chu
  • Liyan Liu
  • Lixin Na
  • Huimin Lu
  • Songtao Li
  • Ying Li
  • Changhao Sun
چکیده

Elevated serum free fatty acids (FFAs) levels play an important role in the development of insulin resistance (IR) and diabetes. We investigated the dynamic changes and the underlying regulatory mechanism of postprandial FFA profile in hyperlipidemia (HLP) and their relation with insulin sensitivity in both humans and mice. We found that serum stearic acid (SA) is the only fatty acid that is increased dramatically in the postprandial state. The elevation of SA is due to increased insulin-stimulated de novo synthesis mediated by sterol regulatory element-binding protein-1c (SREBP-1c)/acetyl-CoA carboxylase/fatty acid synthase/elongation of long-chain fatty acid family member 6 (ELOVL6) and the elongation of palmitic acid (PA) catalyzed by ELOVL6. Downregulation of SREBP-1c or ELOVL6 by small interfering RNA can reduce SA synthesis in liver and serum SA level, followed by amelioration of IR in HLP mice. However, inhibition of SREBP-1c is more effective in improving IR than suppression of ELOVL6, which resulted in accumulation of PA. In summary, increased postprandial SA is caused by the insulin-stimulated SREBP-1c pathway and elongation of PA in HLP. Reduction of postprandial SA is a good candidate for improving IR, and SREBP-1c is potentially a better target to prevent IR and diabetes by decreasing SA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein kinase Cbeta mediates hepatic induction of sterol-regulatory element binding protein-1c by insulin.

Sterol-regulatory element binding protein-1c (SREBP-1c) is a transcription factor that controls lipogenesis in the liver. Hepatic SREBP-1c is nutritionally regulated, and its sustained activation causes hepatic steatosis and insulin resistance. Although regulation of SREBP-1c is known to occur at the transcriptional level, the precise mechanism by which insulin signaling activates SREBP-1c prom...

متن کامل

Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-binding-protein-1c-dependent pathway.

We previously reported that sterol-regulatory-element-binding-protein-1c (SREBP-1c) mediates insulin upregulation of genes encoding glycolytic and lipogenic enzymes in rat skeletal muscle. Here, we assessed whether glucose could regulate gene expression in contracting myotubes deriving from cultured muscle satellite cells. Glucose uptake increased twofold after a 30 minute treatment with a high...

متن کامل

Metformin attenuates palmitic acid-induced insulin resistance in L6 cells through the AMP-activated protein kinase/sterol regulatory element-binding protein-1c pathway.

AMP-activated protein kinase (AMPK) is an important effector of metformin action on glucose uptake in skeletal muscle cells. We recently reported that metformin improved insulin receptor substrate-1 (IRS-1)-associated insulin signaling by downregulating sterol regulatory element-binding protein-1c (SREBP-1c) expression. In this study, we investigated whether AMPK activation and SREBP-1c inhibit...

متن کامل

Sterol-regulatory-element-binding protein 1c mediates the effect of insulin on the expression of Cidea in mouse hepatocytes.

Members of the Cide [cell death-inducing DFFA (DNA fragmentation factor-alpha)-like effector] gene family have been reported to be associated with lipid metabolism. In the present study, we show that Cidea mRNA levels are markedly reduced by fasting and are restored upon refeeding in mouse livers. To elucidate the molecular mechanism, the promoter region of the mouse Cidea gene was analysed and...

متن کامل

A rare missense mutation in a type 2 diabetes patient decreases the transcriptional activity of human sterol regulatory element binding protein-1.

Sterol regulatory element binding protein 1 (SREBP-1) transcription factors play a key role in energy homeostasis by regulating genes involved in both carbohydrate and lipid metabolism, and in adipocyte differentiation. The 5' end of the mRNA-encoding SREBP-1 exists in two forms, designated 1a and 1c. The divergence results from the use of two transcription start sites that produce two separate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013